

UNCLASSIFIED

AD. 667 956

ONE-LINE RANDOM NUMBER GENERATORS AND THEIR
USE IN COMBINATIONS

George Marsaglia, et al

Boeing Scientific Research Laboratories
Seattle, Washington

March 1968

Processed for . ..

DEFENSE DOCUMENTATION CENTER
DEFENSE SUPPLY AGENCY

©[LHÄ[K?DKl@[HK9)y]S[l
FOR FEDERAL SCIENTIFIC AND TECHNICAl INFORMATION

U. S. DEPARTMENT OF COMMERCE / NATIONAL BUREAU OF STANDARDS / INSTITUTE FOR APPLIED TECHNOLOGY

■——■■ ■—' "■ ■

Dl-82-0689

ONE-LINE RANDOM NUMBER GENERATORS

AND THEIR USE IN COMBINATIONS

by

George Marsag11a

and

T. A. Bray

Mathematical Note No. 551

Mathematics Research Laboratory

BOEING SCIENTIFIC RESEARCH LABORATORIES

March 1968

I

■■ ' II I

Summary

This Is a discussion of some one-line random number

generators, that Is, generators requiring a single FORTRAN

Instruction, together with a description of some short

FORTRAN programs which mix several such generators. Evidence

suggesting that the simple congruentlal generators are

unsatisfactory continues to grow; one of the most promising

alternatives is to mix several simple generators. These

composite generators do better in various tests for randomness

than do the simple congruentlal generators used at many

computer centers. If you wish to experiment with generators,

or perhaps develop a more reliable generator than those

currently available, you may want to consider some of the

simple FORTRAN programs discussed here.

1. Introduction

If you need a random number in a computer, chances are you will

call to a library subroutine which has coded, In machine language, a

precise version of one of the simple congruentlal generators*, for

13 35
example, x . « 5 x, modulo 2 . By a precise version, we mean that

35 32
the program Is coded to give exact arithmetic modulo 2 , 2 , or

whatever, with tests for overflow or sign bits, and appropriate

adjustments. Alternatively, you may write your own generator in

FORTRAN, carefully meeting the congruence relations with tests and

adjustments for negative Integers.

We would like to point out that one can take advantage of the

way that FORTRAN handles Integers in each particular computer to simplify

congruentlal generators—in effect, generating random integers by means

of a single FORTRAN instruction of the form I - I*K. Examples will

follow for some particular computers with large numbers of users—IBM 360,

IBM 709A and SRU (Unlvac) 1108. If your computer is not one of those,

you can easily make the necessary adjustments if you know details of hov

FORTRAN multiplies Integers in your computer.

While a simplified FORTRAN generator which is faster and more

convenient than the usual machine-language subroutines is an advantage

in Itself, the principal advantage seems to be the ease with which the

one-line generators can be combined to produce composite generators.

These will be discussed in Section 3.

*A11 of the references at the end of this article discuss congruentlal
generators. Particularly good reviews are the book by Jansson [6],
and papers by Chambers [1], and Hull and Dobell [5].

-2-

2. One-Line Generators

Consider first the IBM 360. Here FORTRAN Integers are stored as

32 binary digits and multiplication of two Integers produces a 32 bit

32
Integer which Is the ordinary product modulo 2 . However, when used

In algebraic expressions, a stored Integer I Is considered positive

or negative according to the relation

i ii u < i < /

M(I) -
32 11 32

-2 +1 if 2 * <_l <_2* - 1.

32
Now if I is uniformly distributed over the interval 0 < I < 2 - 1,

then the piecewise linear function M(I) will be uniform over its range,

-231 to 231 - 1. It follows that in the IBM 360 the single FORTRAN

31
Instruction I • K*I will, for each random Integer I on -2 < I <

31
2 - 1, produce a new random integer in that Interval, with cycle length

and randomness or lack of randomness according to the standard properties

32
of the congruential generator x.... - kx. modulo 2

Combining a float instruction with our one-line generator, we then

have this simple FORTRAN program for producing random uniform variates in

the IBM 360:

Let I be the current random integer, and U the curren-, random

uniform variate. Then new values of I and U are given by:

I = I*K

U = .5+FLOAT(I)*.2328306E-9.

-32
The constant in the second instruction is 2 in declmaj form.

The constant integer K can be chosen for maximum cycle length in the

-3-

form K - 8m ± 3. The references contain suggestions on the choice of

K. Almost any choice of odd K will serve when this generator Is to be

mixed with others In a composite generator.

For the IBM 7094, the situation Is slightly simpler. There,

positive Integers are stored In FORTRAN In 35 bits, and multiplication

35 of two positive Integers Is ordinary multiplication modulo 2 . Thus

these two FORTRAN instructions will successively generate random integers

I and random uniform variates U in the IBM 7094:

I = I*K

U = FLOAT(I)*.292038S0SE-10.

-35
The constant In the second Instruction Is 2 In decimal form.

Remarks In the previous paragraph apply to the choice of K.

For the SRU 1108, the situation Is again changed. There, FORTRAN

Integers are stored as 36 bits, and the product Is as In ordinary

36
arithmetic modulo 2 , but when used In algebraic expressions or

output, a 36 bit Integer I Is viewed as positive or negative according

to the function

i ii u ^ i < /

M(I)

I -236 + 1 + 1 If I >_ 235.

Thus these two FORTRAN instructions will successively generate random

integers I and random uniform variates U in the SRU 2108:

I « I*K

U* .5+FLOAT(I)*.145619152E-10.

—36
The constant In the second Instruction is 2 and remarks above apply

to the choice of K.

-4-

If you want one-line random integer generators, or two-line uniform

variable generators. In computers other than those mentioned here, you must

find out what happens in FORTRAN integer multiplication. You may be able

to figure this out from a manual; we have found the easiest, and most

2 3 4
foolproof, way is to merely compute, say, 3, 3 , 3 , 3 ,... in FORTRAN

and have the results printed out. It is then easy to see what is going on;

the reassuring fact is that in most computers the FORTRAN recurrence

relation I « I*K will produce a full period of residues relatively prime

^2 IS 16
to some modulus, 2 ,2 ,2 , etc., and this set of residues can be

appropriately adjusted with a float instruction. After all, the theory of

congruentlal generators is based on equivalence classes of residues, and

there is no need to use machine language subroutines or positive-negative

teste to ensure that the representatives of the residue classes are the

familiar least-positive ones.

iM^W^^^M^^^M

-5-

3. Composite Generators

Numerous papers [1], [2], [4], [5], (6], [7], and [8] have reported

unsatisfactory results for various simple congruentlal generators of the

k k
type x. . ■ ax. or x. . - ax. + b modulo 2 or 10 or some prime.

While the search continues for simple generators which will pass

Increasingly more stringent batteries of tests, there are some who

believe, (and we are among them), that no simple congruentlal generator

Is reliable enough to serve as the standard generator for a computer

Installation. A promising means of providing Improved generators lies

In mixing two simple generators, as suggested by MacLaren and Marsaglla

[7], who used one generator to choose from 128 storage locations kept

filled by a second generator; by Westlake [10], who wished to avoid the

storage requirements of that method and instead used the sum of two

generators after using a portion of one output for a random cyclic

permutation of the bits of another. Then Gebhardt, [3], used the method

of M and M, [7], but got good results with only 16 storage locations

and a single Fibonacci sequence, x1+2 - xi+1 + xi mod 2 , to both fill

the storage locations and select them.

By using the one-line FORTRAN generators discussed above, we can

develop FORTRAN composite generators in a variety of ways. Short and fast

programs will result even if three generators are mixed—one to fill, say,

128 storage locations; one to choose a location from the 128; and a

2
third thrown In Just to appease the gods of chance. Why be half (or y)

safe?

" • ■—^

-6-

Here are sample composite generators for the three computers

mentioned above. In each case, assume we have assigned Initial odd

Integer values to N(1),N(2) N(128),L,M, and K. Then these

FORTRAN Instructions will provide uniform random variables U on

the Interval 0 < U < 1:

IBM 360,

L - L*ML

M ■ M"MM

J - 1+IABS(L)/16777216

U - .5+FLOAT(N(J)+L4M)*.2328306E-9

K - K*MK

N(J) • K

IBM 7094,

L - L*ML

M ■ M*MM

J - 1+L/268435A56

U - FLOAT(N(J)+L+M)*.291038305E-10

K - K*MK

N(J) - K

SRU 1108,

L ■ L*ML

M ■ M"MM

J - 1+IABS(L)7268435456

U - .5+FLOAT(N(J)+L4M)*.145519152E-10

K - K*MK

N(J) - K

-7-

In these programs, the Integer J is used to choose from N(l)

to N(128); J comes from the random Integer L after division by the

appropriate power of 2. In forming U, the argument of the float

32 35 36 function is the sum (modulo 2 , 2 , or 2) of the randomly chosen

N(J), the random integer L used to find J, and a third (gratuitous?)

random integer M.

The random integers L, M and K are the outputs of the three

one-line generators; constants ML, MM and MK can be chosen in the

form 8m ± 3 to ensure long periods. Chances are that randomly choosing

six-to eight-octal-digit integers ending in 3 or 5 will provide

satisfactory multipliers. Van Gelder [9], found that these octal

multipliers were promising: 10405, 20005, 105005, while we got excellent

test results with decimal integers ML - 65539, MM * 33554433, and

MK - 362436069.

The composite generator described above is short and easy to

program in FORTRAN. Since the statistical properties of composite

generators appear to be better than those of simple generators, the

only drawbacks would seem to be storage requirements and speed.

The programs above require stored values N(1),N(2),...,N(128). For

modem computers, this seems a trifling requirement. How often do you,

or your associates, run a Monte Carlo problem so big that you can't

afford 128 storage locations? For such unusual situations, or for small

special purpose computers where one still demands a generator beyond

suspicion, the stoiage requirements can be reduced to 64, 32 or 16.

As for speed even though the composite generator mixes 3 congruential

-8-

generators and uses a float Instruction, the program is still fast

enough to produce huge quantities of uniform variates should they be

needed:

Rates for Producing Uniform Variates

Composite Composite
Computer Two-Line (In-line) (Subprogram)

IBM 360/44 7,200/8ec 3,500/sec 2,000/8ec

IBM 7094 18,800/sec 6,700/sec 4,900/sec

SRU 1108 86,100/8ec 25,000/sec 19,200/sec

The composite generator (listed on page 6) has two rates—as a

6-line generator incorporated in a FORTRAN program, or as a separate

FORTRAN subprogram.

-9-

References

[1] Chambers, R. P., "Random number generation on digital computers".

IEEE Spectrum 4 (February 1967), pp. 48-56.

[2] Coveyou, R. R., and MacPherson, R. D., "Fourier analysis of uniform

random number generators". «7. Aeaoc. Comput. Mach. 14, No. 1,

(January 1967), pp. 100-119.

[3] Gebhardt, Friederich, "Generating pseudo-random numbers by

shuffling a Fibonacci sequence". Math. Comp. 21, No. 100,

(October 1967), pp. 708-709.

[4] Greenberger, M., "Method In randomness". J. Aesoc. Comput. Mack. 8t

pp. 177-179, 1965.

[5] Hull, T. E., and Dobell, A. R., "Random number generators".

SIAM Rev. 4, pp. 230-254, 1962.

[6] Jansson, Blrger, "Random Number Generators". Victor Pettersons

Bokindustrlab, Stockholm, 1966.

[7] MacLaren, M. D., and Marsaglla, G., "Uniform random number generators".

J. Assoc. Comput. Mach. 12, pp. 83-89, 1965.

[8] Peach, P., "Bias in pseudo-random numbers". J. Amer. Statist. Assoo.

56, pp. 610-618, 1961.

[9] Van Gelder, A., "Some new results In pseudo-random number generation".

J. Aeeoo. Comput. Mach. 14, No. 4, (October 1967), pp. 785-792.

[10] Westlake, W. J., "A uniform random number generator based on the

combination of two congruential generators". J. ASBOC. Comput. Mach.

14, No. 2, (April 1967), pp. 337-340.

